Breakout rooms

Now go to one of the following breakout rooms

You can swap later. Material from all rooms (1-5) will be provided later.

- I. Relic density (standard)
 - 2. Relic density (dark sector, coupled Boltzmann eqs.)
 - 3. Gamma-ray (and other CR) spectra
 - 4. J-factors
 - 5. Neutrino signals
 - 6. General technical support [installation/coding/shell usage/...]
- You can start right away with problem I and II above...

 See also the link to the tutorial from the ISAPP homepage

Actively help each other while Joakim and me go around!

Scalar Singlet model, continued

Now let's have a look at one of the example programs

Problem III:

Copy examples/aux/ScalarSinglet_RD.f to your private directory and

- 1. make sure that you can compile and run this main program
- 2. Try to understand what the program does, and how [you can ignore/comment out the parts about kinetic decoupling; we don't need them here]
- 3. Produce a plot that shows $\lambda(m_\chi)$ resulting in the correct relic density, as well as the change (in percent) when instead using the 'correction' of the annihilation rate from problem II

Hint:

The default setting is a rather dense tabulation. To save time, in particular when testing, you thus want to first increase the parameter settings for logdeltam and logdeltamres

Thermal averages

Understanding a relic density plot like from the previous example typically boils down to understanding the behaviour of the thermally averaged annihilation cross section $\langle \sigma v \rangle$

Problem IV:

Choose one (or two) parameter combinations of $\lambda(m_\chi)$ where you expect differences in the relic density calculation for the two 'models' from the previous problem. Plot $\langle \sigma v \rangle(T)$ for these cases, and convince yourself that this explains the differences you found in problem III.

Hint: • The thermal average is computed by the function $\mathrm{src/rd/dsrdthav.f}$

Variations of the 'Steigman plot'

Now let's have a look at variations of the same theme, for a slightly more complex example program

Problem V:

Copy examples/aux/oh2_generic_wimp.f to your private directory and

- make sure that you can compile and run it
 [Note the effect of the two makefile targets for this program! Cf. also Fig. 3 in the DarkSUSY article
- 2. Produce the 'Steigman plot' for 'p-wave annihilation', i.e. assume $\sigma v \propto v^2$ [Cf. Fig. 4 in https://arxiv.org/pdf/2007.03696]
- 3. Add a generic Sommerfeld enhancement S(v) of the *s*-wave cross section, assuming a mediator mass of 1 GeV.
- 4. Explore the effect of adding a sharp Breit-Wigner resonance, by using $\sigma v \propto 1/[(s-m_R^2)^+ m_R^2 \Gamma_R^2]$, with m_R =200 GeV and Γ/m =0.001.

Hints:

- ullet @3 Particle physics-dependent, but 'generic' auxiliary functions like Sommerfeld enhancement factors are found in ${
 m src}$ ${
 m models/common/aux/}$
- @4 Does your code capture the resonance correctly? Remember (from the general intro) that the RD routines build on two interface functions...